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Abstract

This paper presents the unique Cheddar Gorge data set intended for the multiple disciplinary research areas of
ground based vehicle autonomy and �eld robotics. The name of the data set refers to a highly aesthetic and genuine
canyon in the United Kingdom, Somerset, known as Cheddar Gorge, making a challenging yet exciting location to
collect, share and use data from. Furthermore, the Cheddar Gorge data set makes several notable contributions,
identi�ed through extensive systems engineering and research. The most important contribution is that the criteria
for selecting the sensors, platform and location were inue nced directly from genuine customer requirements, from
both civil and military application domains 1 . This has ensured that the data set is as uncontrived and unbiased
as possible from any algorithm requirements, but instead favour real application conditions. In short, the Cheddar
Gorge data set exploits a broad sensor payload consisting ofa combination of active and passive sensors, deployed
on a ground based vehicle in a challenging environment and made publicly available.

1 Introduction

The demand from research scientists to system engineers in the robotics community, for publicly available and peer-
reviewed data sets of a high calibre peaked with the editorial,Data Papers - Peer Reviewed Publication of High Quality
Data Sets, in the International Journal of Robotics Research [4]. The articlewas the �rst published in the Robotics
�eld to recognise this demand and urged scientists to act. This demand was fundamentally driven by the need to
support algorithm validation, performance benchmarking and system analysis.

Many of the most well cited data sets such as the Victoria Park [3], RADISH [2] and RAWSEEDS [1] have been
publicised via the website OpenSLAM [9]. Additionally, there are the ACFR data sets [5] and as a result of the editorial
[4], the New College [8] data sets, also both now publicly available. Typically, these provide small to medium scale
data sets with multiple sensors and accurate ground-truth data,using di�erential global positioning systems (D-GPS)
outdoors or a sensor fusion network indoors. However, all thesehave been inuenced by each research group's own
project requirements and available hardware resources.

In contrast, the need for the Cheddar Gorge data set emerged through extensive systems engineering in the �eld
of autonomy. This system engineering approach comprised of capturing customer, user and system requirements
and later systems analysis de�ning key performance indicators, metrics, bounds and tests. The process highlighted
signi�cant but often understated requirements that the Cheddar Gorge data set should meet. These included that the
Cheddar Gorge data set:

1. Shall support a diverse range of state of the art algorithm research, from simultaneous localisation and mapping
to scene classi�cation.

2. Shall capture sensor data from a real environment representative of larger scale challenges.

3. Shall be independent from published and current research based algorithm requirements.

In the next section we introduce the platform, sensor suite and sensor con�guration, with Sections 3 to 5 describing
the sensor pose measurement, synchronisation and calibration processes. Then in Section 6 we describe the special
location highlighting particular epochs of interest that occurred in the data set. This is followed by Section 7 which
provides a set of �gures for visualising samples of the di�erent sensor data. The next three sections explain the known
issues and most importantly how to gain access to the data set, concluding in Section 10 with our future aspirations.

1The customer in this case is BAE Systems (Operations) Limite d, UK.
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2 Platform, Sensor Suite and Sensor Con�guration

The Cheddar Gorge data set used the BAE Systems, Advanced Technology Centre's Bowler Wildcat platform displayed
in Figure 1. The Wildcat platform was chosen for being a large scale autonomous unmanned ground vehicle (UGV)
demonstrator. Consequently, the Wildcat has genuine customer requirements for localising without the aid of GPS
and provides numerous sensor mounting positions and computer hardware options. Where applicable, the sensors
were mounted on the platform roof to meet legal and health and safety requirements.

Figure 1: The BAE Systems, Advanced Technology Centre's Bowler Wildcat autonomous unmanned ground vehicle.

The selection and mounting of sensors was chosen to satisfy the �rst two requirements highlighted in Section 1.
The sensor suite consisted of a:

� Point Grey Research stereo vision camera (model Bumblebee 2 BB2-08S2C-38) with two 1=3" progressive scan,
charged couple devices (CCDs) mounted in a �xed canonical con�guration, with a baseline of 12 cm. The mount
position is shown in Figure 1 at label A.

� Sony high de�nition video camera (model HDR-HC1E) con�gured as a monocular forward facing camera, cap-
turing interlaced 24 bit, MPEG2 compressed video with a resolution of1920� 1080 pixels. The mount position
is shown in Figure 1 at label B.

� FLIR infra-red video camera (model ThermaCam P620) con�gured as a monocular forward facing camera,
capturing 8 bit, MPEG2 compressed video with a resolution of 640� 480 pixels. The mount position is shown
in Figure 1 at label C.

� Velodyne 3D Light Detection and Ranging sensor (LiDAR) (model HDL-64E S2). This has a 360� horizontal
�eld of view (FOV), a 26 :8� vertical FOV and has a data rate of over 1:3 million point measurements every
second up to a range of 120 meters. The mount position is shown in Figure 1 at label D.

� Oxford Technical Solutions inertial navigation system (INS) (model OXTS RT3044). This contains a US NAVS-
TAR GPS dual antenna receiver, local Di�erential GPS (DGPS) receiver, OmniSTAR subscription and high
precision inertial measurement unit (IMU) providing acceleration and gyroscopic measurements. All localisation
data is internally fused using a built in �lter providing a ground-truth lo cation estimate. The mount position is
inside the vehicle above the rear di�erential.

� Xsens (model MTi-G-28) small and low cost IMU used to capture rawand uncalibrated, acceleration, magnetic
�eld, gyroscopic and GPS data. The mount position is shown in Figure 1at label E, behind the warning light.

� Set of four independent wheel distance encoders based on the anti-lock braking system (ABS). The raw voltage
was captured from the ABS inductor coil located in each wheel usinga Labjack U6-Pro analogue-to-digital
converter (ADC) with 16-Bit precision at 25 kHz. Turning informatio n can be calculated from the di�erences in
wheel rotation speeds.

All sensor data was captured to a computer located in the rear of the vehicle. The computer hardware consisted
of: a Dell PowerEdge R710 blade server, Dual Intel Xeon X5570 Quad Core processors at 2.93GHz, 16 GB of RAM
and 1.5 TB of solid state disks in RAID 0 con�guration.
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3 Sensor Pose Measurements

In this section we provide the sensor pose measurements generated using a highly calibrated laser tracker device
manufactured by Leica. This provides measurements to within a micron precision by averaging a total of 500 readings
of a laser beam to a reective target within line of sight. We determined a local coordinate system by measuring the
position of a unique reference point on the Velodyne LiDAR located onthe highest part of the vehicle. With this
de�ned, we measured a central mounting point for each sensor relative to the reference point. A translation based on
the technical drawings of each sensor �nally yielded a relative 3D sensor position. The precision of the laser tracker
allowed us to measure and calculate the 3D orientation of each sensor mounting plate. In total, the laser tracker can
provide the full 6 degrees of freedom (DoF) for each sensor. To generate orientation, four points were measured on
the plane surrounding the mounting position. Based on these measurements the laser tracker software calculated a
roll, pitch and yaw relative to the reference point. In Figure 2 the coordinate systems for each sensor is shown.

Figure 2: A schematic of the di�erent coordinate systems used.

The 6 DoF sensor poses are provided in Table 1. These are based on the mean of 5 measurements to compensate
for the human error associated with positioning the reective target on the sensor mounting point.

Table 1: Sensor pose measurements.
Sensor X Y Z Roll X Pitch Y Yaw Z
Name (mm) (mm) (mm) (rad) (rad) (rad)
Point Grey Bumblebee 2 (Left) 342 27 -139 0.0020 -0.0036 -0.0044
Point Grey Bumblebee 2 (Right) 342 147 -139 0.0020 -0.0036 -0.0044
Sony HDR-HC1E 394 499 -198 0.0236 0.0014 0.0013
FLIR ThermaCam P620 214 587 -208 0.0236 0.0014 0.0013
Velodyne LiDAR HDL-64E S2 89 89 -17 0.0005 -0.0005 0.0012
OXTS RT3044 INS -948 174 -1018 -0.0262 1.4241 0.0426
Xsens MTi-G IMU -111 -381 -252 -0.0086 -0.0082 0.0090
Wheel Rear Left -1038 904 -1684 - - -
Wheel Rear Right -1038 -666 -1684 - - -
Wheel Front Left 1662 904 -1684 - - -
Wheel Front Right 1662 -666 -1684 - - -

4 Sensor Calibration

We include the manufacturer's calibration data for the Xsens MTi-G IMU, Velodyne LiDAR and Point Grey Bumblebee
2. The calibration data for these sensors was not more than a month old. Wheel odometry is provided in the form of
4 voltage signals taken from the ABS inductor coils located in each wheel. The signal manifests as a sinusoidal wave
with period and amplitude in proportion to the speed of each wheel. A full wave cycle indicates the movement of one
ABS magnetic tooth moving past the inductor. Table 2 displays essential information to convert this signal into a
vehicle pose estimate.
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Table 2: Wheel odometry key parameters
Key Value
Wheel Track 1580� 2 mm
Wheel Base 2700� 2 mm
Wheel Circumference 2520� 4 mm
Wheel Tread Width 180 � 1 mm
ABS pulses per revolution 60

5 Sensor Synchronisation

Collecting data simultaneously from several sensors presents a signi�cant challenge when attempting to synchronise
data across multiple computers. In previously published data sets,sensor data was recorded to several computers, each
synchronised using the Network Time Protocol (NTP) or IEEE 1588-2008 Precision Time Protocol (PTP) [1]. However,
using network time synchronisation software will vary one or more clocks during the synchronisation process, causing
a non-constant time di�erence between clocks. This results in imprecise time stamp data that can be detrimental to
data fusion algorithms. Our approach to this problem was to avoid a multiple computer architecture. Instead, we
relied on the latest computational hardware to simultaneously log sensor data onto a single device. This consisted
of multiple core processors, an array of solid state disks in a RAID 0 con�guration and a large RAM capacity, see
Section 1. The available storage space and infrastructure of the Wildcat platform made the hardware installation and
uninterrupted power requirements possible.

6 Location

Set in the Mendip Hills of Somerset, United Kingdom is the natural geological formation of Cheddar Gorge. Formed
by glacial melt water over the last 1 million years, the gorge exhibits a steep cli�-face cut through the limestone
hills. The gorge is surrounded by woodland and farmland, except to the southwest where the small village of Cheddar
exists (at the lower end of the gorge). Along the centre of the gorge exists a carriage way allowing tra�c to pass
through providing a spectacular view of the 137m vertical cli� facesand rock formations (Figure 3). Cheddar Gorge
was chosen for both its aesthetic topography and con�ned spacewhich can provide interesting research challenges
from both robotics and computer vision. Examples of such problemsinclude 3D scene reconstruction; GPS multipath
e�ects and moving object detection and tracking.

The vehicle platform and data set begin on the road to the east of the gorge. The vehicle traverses the gorge
and completes a large loop via the villages of Cheddar and Draycott and a narrow country lane back to the start
position. The gorge is passed a second time, after which a loop of Cheddar village is completed. Finally, the vehicle
is driven back through the gorge in the reverse direction back to the start position. This course lasted just under 1
hour, capturing a total of 329 GB of sensor data over 31:8 km. Figure 4 shows the route taken by the vehicle as it
drives through Cheddar Gorge, Cheddar Village and surrounding countryside.

7 Data Visualisation

In Figure 5, a visualisation of 4 out of the 7 sensors output is displayed. In this scene, a bus parked in the car-park
gorge can be viewed simultaneously from (a) a visual camera, (b) a thermographic infra-red camera (c) a 3D LiDAR
scan and (d) a stereo vision camera.

During the data set, there are several notable events that wouldbe of interest to researchers. First, whilst moving
south through the gorge, in a few instances a low sun angle causes extreme lens are on the visual spectrum cameras.
Second, there are many vehicles and pedestrians moving near the vehicle, both towards and with the direction of travel.
Third, occasionally the GPS signal is lost on the OXTS INS causing an increase in the tracked position variance. This
occurs when the vehicle passes through the gorge, or underneath tree foliage and provides an interesting case of GPS
intermittence.

8 Data Issues

Capturing data sets of this scale, with this platform and with so many sensors is expensive. Therefore not every
aspect of the Cheddar Gorge data set is perfect. In this section we highlight the issues and limitations of the data.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Selected photographs of the Cheddar Gorge data set with the respective locations referenced in Figure 4

Unfortunately, the FLIR P620 infrared camera and Sony HD camera could not be integrated with the on-board
computer. This meant that neither were synchronised to the other sensors. Further, the FLIR P620 paused recording
intermittently to perform automatic radiometric adjustments. Co nsequently, as a result of neither sensor providing
time stamp information, the data is di�cult to accurately synchronis e. Through experiments, we recommend that by
using the known initial start time and by assuming a near constant frame rate of 25 fps, that the data is still extremely
useful. Also , whilst the FLIR P620 infra-red camera provides extremely high quality thermal video imagery, see Figure
5.a, the images contain a small FLIR company logo and temperature bar embedded in every frame.

During the data set at some locations the OXTS RT3044 INS receivedsignals from less than 4 GPS satellites. This
caused occasional drifts in the localisation data. This happened when the vehicle was driven through the steep sided
gorge and heavily wooded areas. This signal degradation was anticipated and is a characteristic of using these sensors
for localising in these environments. It is also possible that the XsensMTi-G IMU bias and gains recorded may be
inaccurate based on limited testing immediately before data set collection. Also, the timestamps may be inaccurate
from the IMU recording measurements in batch.

In addition to sensor clock synchronisation, discussed in Section 5,there is also the issue of the sensor delay time.
This is the time di�erence between when the sensor captures the data and when the system clock time is recorded.
Estimating this is non-trivial since there can be an unknown amount of processing on the local computer or on the
sensor itself.
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Figure 4: An aerial view of the vehicle trajectory with interest point s referencing the photos in Figure 3

9 Distribution and Access

We are keen to make the Cheddar Gorge data set available to the research community under license. To apply for a
copy, the reader must emailjames.revell@baesystems.comincluding the name of the researcher, organisation, address
and brief statement on how they will use the data. Once received, alicense and all additional information will then
be posted to that address and a con�rmation email sent. If the terms and conditions in the license are agreeable,
the reader must send a signed copy of the license and an external hard disk drive (USB2, at least 350 GB to the
address given on the license. When we have received the disk, the Cheddar Gorge data set will be copied onto it
and sent back. Table 3 shows key information about the data set. Please note that no software will be provided to

Table 3: The Cheddar Gorge data set key information.
Data Set Duration Average Data Environment Lighting Start Date
Name (minutes) Speed (km/h) Size (GB) Conditions Conditions & Time

Cheddar 57 31.5 329 Dry, Sunny Low/Bright 5th March 2010
Gorge 2010 Clear & Cold 14:58 GMT

parse, visualise or process the data. Standard data formats areused throughout and data sheets are provided where
applicable. References [7] and [6] should be used to cite this work.
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(a) (b)
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Figure 5: Sensor data captured in Cheddar Gorge from (a) FLIR P620 Infra-red camera, (b) Sony HD Camera and
(c) Velodyne LiDAR point cloud and (d) the Point Grey Bumblebee 2 stereo camera.

10 Future

To adapt to future advances in technology, further data sets will be captured using a similar platform, with di�erent
sensor combinations, using updated solutions and meeting new system requirements.
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